

Agenda (Day 1)

1. Introduction

- o Overview of Electromagnetic Compatibility
- Coupling Mechanisms
- o Analog, Digital and Power Circuits

2. Circuit Components and Parasitics

- Resistance, Capacitance and Inductance
- Absolute, Self, and Mutual Capacitance
- Self, Mutual and Partial Inductance
- Component Parasitics
- Estimating Parasitic Values3. Signal Routing and Termination

- Tracing Current Paths / Concept of Least Impedance
- Transition Time Control
- RLC Circuits
- Transmission Lines

4. Identifying the Unintentional Antennas

- Essential Elements of an Antenna
- o What Makes a Good Antenna
- o What Makes a Poor Antenna

LearnEMC 2025

5. Noise Sources and Coupling Mechanisms

- Integrated Circuits as Sources of EMI
- o Parasitic Oscillations and Unexpected Noise Sources
- o Coupling Between Noise Sources and Antennas
- \circ $\;$ Differential Mode to Common Mode Conversion

6. Grounding

Electromagnetic Compatibility Principles and Design

- Definition of Ground
- $\circ\quad$ EMC Ground vs. Current Return
- EMC Ground vs. Safety Ground
- \circ $\,$ Ground Structures and Grounding Conductors

7. "Ground" in Mixed-Signal Environments

- Analog and Digital Components on a PCB
- Power Ground
- Ground in Circuit Simulations

2


```
LearnEMC 2025
```

Electromagnetic Compatibility Principles and Design

3

Agenda (Day 3)

13. Key System-Level Design Considerations

- For Conducted Emissions Tests
- For Radiated Emissions Tests
- o For Radiated Immunity Tests
- For Electrical Fast Transient Tests
- For Lightning Surge Tests
- For Electrostatic Discharge Tests

14. An EMC Compliance Strategy

- o Reviewing a Circuit Board Design
- o Reviewing a System Design
- \circ $\;$ $\;$ Identifying Grounds, Current Paths and Antennas $\;$
- Recognizing Safety Critical EMC Issues
- o Performing a Worst-Case Analysis

LearnEMC 2025

15. Specific Design Examples

- Circuit Breaker
- o Ethernet Interface
- o Examples Provided by the Class

16. Course Summary

- Review of Key Concepts
- Resources for EMC Problem Solving

Electromagnetic Compatibility Principles and Design

4

Basic Calculations H-field Coupling from Lightning to Electrically Small Circuit Holly Homeowner decides to put a wireless access point in her garage. She buys a bundle of the best shielded Ethernet cable she can find and strings it from the roof of her house to the roof of the garage 10 meters away. After hooking up the cable on the house side and making sure the shield of the cable is well grounded, she runs over to the garage to hook up the phone. As she holds on to the cable, there is a stroke of lightning 0.15 kilometers west of the house. Modeling the lightning stroke as an infinite current element, what is the voltage induced across Holly due to the magnetic field coupling? $V_{Holly} = -\partial \Psi / \partial t$ $\approx -\partial /_{\partial t} \left[\mu_0 H (\text{Area of loop}) \right]$ 28 kA risetime = 1.0 µsec falltime = 1500 µsec $\approx -\frac{\partial}{\partial t} \left[\mu_0 \left(\frac{l}{2\pi r} \right) (10 \text{ meters} \times 5 \text{ meters}) \right]$ I 4π×10⁻⁷ H/m (50 m²) $2\pi \times 155$ meters (neglect displacement current) $\approx -\frac{\partial I}{\partial t} [6.45 \times 10^{-8} \text{ Henries}]$ $-6.45 \times 10^{-8} \left(\frac{28 \times 10^3 \text{ A}}{1 \times 10^{-6} \text{ sec}} \right)$ 10 meters 0 < t < 1 µsec -28×10^3 A $1\mu sec \le t \le 1501\mu sec$ 6.45×10⁻⁸ 1500×10⁻⁶ sec 0 otherwise 150 meters 5 meters -1.8×10^3 volts 0 < t < 1usec 1.2 volts $1\mu sec \le t \le 1501\mu sec$ 0 otherwise LearnEMC 2025 Electromagnetic Compatibility Principles and Design

Exam	ples
	Operation of ECU interferes with wireless communications
	Coupling from distant cell phone or FM radio towers
	Failure to meet FCC or CISPR 22 radiated emissions requirements above 100 MHz
	Device failures caused by a wireless cell phone or DSRC transmissions
Soluti	ions
	Reduce efficiency of the unintentional antenna
	Reduce coupling between antenna and the source/victim
	Isolate signals in frequency by filtering
	Isolate signals in time

Frequency	Skin Depth	
DC	00	
60 Hz	8.6 mm	
100 Hz	6.7 mm	
1 kHz	2.1 mm	
10 kHz	670 μm	
100 kHz	210 μm	
1 MHz	67 μm	
10 MHz	21 µm	
100 MHz	6.7 μm	and the second sec
1 GHz	2.1 μm	

lectromagnetic Compatibility Principles and Des

Signal Routing and Termination

Key Points		
ALL pins of device is sw trace doesr	an active device can be significant sources of high-frequency current if the vitching internally at high frequencies. Don't assume a nominally low-speed n't have high-frequency currents flowing on it.	
Relatively w	eak sources can be enhanced by parasitic resonances.	
LearnEMC 2025	Electromagnetic Compatibility Principles and Design	153

ANSI C63.14 - 19 4.151 - Ground, F The electrically int to earth. The facili reference subsyst conduit, junction k 4.152 - Grounding of potential. (2) The connecting that serves in plac National Electric Ground A conducting connecting or to some conduction	92 Dictionary for Technologies of Electromagnetic Compatibility Ground is a conductor that serves as a reference potential and does not carry current!	nt paths , signal ets, ts. mon <u>a extent</u> d the earth	
---	---	--	--

Mixed-Si	gnal Designs	
<mark>lf</mark> you hav impedanc	ve analog and digital returns that must be isolated (to prevent common- ce coupling):	
	Route the returns on separate conductors	
	Provide a DC connection at the one point (or in the one area) where the reference potential must be the same.	
	This must include every place where a trace crosses the boundary between the analog and digital regions.	
LearnEMC 2025	Electromagnetic Compatibility Principles and Design	193

Diodes	0.5 volts to ~10 volts Lowest Energy High Capacitance Usually fail short Voltage limiting device	4	Current -vt vt Voltage	
Varistors	0.5 volts to 10s of volts Low Energy High Capacitance Usually fail short Voltage limiting device	\$	Current -v _t v _t Voltage	
Thyristors	10s of volts to 100s of volts Medium to High Energy Moderate Capacitance Usually fail open Crowbar device		Current	
Gas Discharge Tubes	10s of volts to 1000s of volts High Energy Low Capacitance Fail open Crowbar device	¢	Current -V _t Voltage	

LF Magne	etic Shielding Materials		
	Material	Relative Permeability	
	Gold, copper, aluminum	1	
	Concrete, water, air, vacuum	1	
	Ferrite U60 (UHF Chokes)	8	
	Common Steel		
	Pure Nickel	600	
	Ferrite M33 (inductors)	750	
	Pure Iron	5,000	
	Permalloy (20% iron, 80% nickel)	8,000	
	Ferrite T38 (RF Transformers)	10,000	
	Mu-metal	20,000 - 50,000	
	Supermalloy (recording heads)	100,000	
			-
LearnEMC 2025	Electromagnetic Compatibility Principles and Design		23

Electromagnetic Compatibility Principles and Desigr

256

etic Compatibility Principles and Desigr

Conducted Emissions	EMC Requirements and Key Design Consideration Common Sources of Conducted EMI	S
 1 HF GND SMPS Layout Filter Design Filter Layout Balance Control Transition Times Adequate Decoupling 	 VBATT- VBATT- VBATT- WBATT- Mitigation Option 1: Appropriate Filtering Mitigation Option 2: Control parameters of the switching 	_
	Switching Noise – Field Coupled VBATT+ Heatsink VBATT- GROUND WBATT- GROUND WBATT- WItigation Option 1: Reduce capacitance to chassis or earth Mitigation Option 1: Reduce capacitance Mitigation Option 2: Appropriate Filtering Mitigation Option 3: Control parameters of the switching	
	Switching Noise Coupled to a Power Line VBATT+ • •	_
LearnEMC 2025	Electromagnetic Compatibility Principles and Design	314

Electromagnetic Compatibility Principles and Desigr

Sample PCB La	ayout Design Review Steps	
	 Identify connections to ground structure and locations of all I/O. Identify ground plane layer(s) and extent of plane. Should be solid (not gapped). If gapped, <u>nothing</u> should cross over the gap. If missing in an area, all currents in that area should be traced and all nets scrutinized. Identify ground traces/fills on other layers. There should be no ground traces except where absolutely necessary to isolate current returns. Any component gnd pin connecting to gnd fill should have a via to gnd plane at the pin. Identify power distribution layer(s) and type of power distribution (WSP/CSP/NP). Generally, no two power fills should overlap. Power should only be routed where it is required. Power should only be routed where it is required. Power should only use of all decoupling capacitors for each power net	
LearnEMC 2025	Electromagnetic Compatibility Principles and Design	360

Summary of Design Strategy	
Control all transitions times and signal bandwidths. This will help you identify and define your sources as well as potential coupling paths and antennas.	
Identify all potential antennas for radiated emissions/immunity and ports for conducted emissions/immunity.	
Trace low-frequency currents (signals and applied noise) while looking for potential common-impedance coupling to sensitive circuits.	
Trace high-frequency currents looking for voltage drops that might facilitate coupling between antenna halves.	
Employ filtering and transient protection as needed to keep worst-case coupling below levels that could cause system to fail to meet EMC requirements.	
LearnEMC 2025 Electromagnetic Compatibility Principles and Design	366

lectromagnetic Compatibility Principles and Design

